A highly accurate and computationally efficient approach for unconstrained iris segmentation
نویسندگان
چکیده
0262-8856/$ see front matter 2009 Elsevier B.V. A doi:10.1016/j.imavis.2009.04.017 * Corresponding author. Tel.: +1 305 348 3019. E-mail address: [email protected] (M. Adjouadi). Biometric research has experienced significant advances in recent years given the need for more stringent security requirements. More important is the need to overcome the rigid constraints necessitated by the practical implementation of sensible but effective security methods such as iris recognition. An inventive iris acquisition method with less constrained image taking conditions can impose minimal to no constraints on the iris verification and identification process as well as on the subject. Consequently, to provide acceptable measures of accuracy, it is critical for such an iris recognition system to be complemented by a robust iris segmentation approach to overcome various noise effects introduced through image capture under different recording environments and scenarios. This research introduces a robust and fast segmentation approach towards less constrained iris recognition using noisy images contained in the UBIRIS.v2 database (the second version of the UBIRIS noisy iris database). The proposed algorithm consists of five steps, which include: (1) detecting the approximate localization of the eye area of the noisy image captured at the visible wavelength using the extracted sclera area, (2) defining the outer iris boundary which is the boundary between iris and sclera, (3) detecting the upper and lower eyelids, (4) conducting the verification and correction for outer iris boundary detection and (5) detecting the pupil area and eyelashes and providing means for verification of the reliability of the segmentation results. The results demonstrate that the accuracy is estimated as 98% when using 500 randomly selected images from the UBIRIS.v2 partial database, and estimated at P97% in a ‘‘Noisy Iris Challenge Evaluation (NICE.I)” in an international competition that involved 97 participants worldwide, ranking this research group in sixth position. This accuracy is achieved with a processing speed nearing real time. 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Robust Iris Recognition in Unconstrained Environments
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...
متن کاملVideo Segmentation by Non-Local Consensus voting
We address the problem of Foreground/Background segmentation of “unconstrained” video. By “unconstrained” we mean that the moving objects and the background scene may be highly non-rigid (e.g., waves in the sea); the camera may undergo a complex motion with 3D parallax; moving objects may suffer from motion blur, large scale and illumination changes, etc. Most existing segmentation methods fail...
متن کاملRobust Iris Segmentation under Unconstrained Settings
The rising challenges in the field of iris recognition, concerning the development of accurate recognition algorithms using images acquired under an unconstrained set of conditions, is leading to the a renewed interest in the area. Although several works already report excellent recognition rates, these values are obtained by acquiring images in very controlled environments. The use of such sys...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Image Vision Comput.
دوره 28 شماره
صفحات -
تاریخ انتشار 2010